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ABSTRACTSpatial o-loation patterns represent the subsets of eventswhose instanes are frequently loated together in geographispae. We identi�ed the omputational bottlenek in theexeution time of a urrent o-loation mining algorithm.A large fration of the join-based o-loation miner algo-rithm is devoted to omputing joins to identify instanes ofandidate o-loation patterns. We propose a novel partial-join approah for mining o-loation patterns eÆiently. Ittransationizes ontinuous spatial data while keeping trakof the spatial information not modeled by transations. Ituses a transation-based Apriori algorithm as a buildingblok and adopts the instane join method for residual in-stanes not identi�ed in transations. We show that thealgorithm is orret and omplete in �nding all o-loationrules whih have prevalene and onditional probability abovethe given thresholds. An experimental evaluation using syn-theti datasets and a real dataset shows that our algorithmis omputationally more eÆient than the join-based algo-rithm.
1. INTRODUCTIONA o-loation represents a subset of spatial boolean eventswhose instanes are often loated in a neighborhood. Booleanspatial events desribe the presene or absene of geographiobjet types at di�erent loations in a two dimensional orthree dimensional metri spae, e.g., surfae of the Earth.Examples of boolean spatial events inlude business types,mobile servie request, disease, rime, limate, plant speies,et. Spatial o-loation patterns may yield important in-sights for many appliations. For example, a mobile servieprovider may be interested in servie patterns frequently re-quested in a lose loation, e.g., `today sales' and `nearbystores'. The frequent neighboring request sets may be usedfor providing attrative loation-sensitive advertisements,
Thiswork waspartially supported byDigital TechnologyCenter of Univer-
sity of Minnesota, NASA grant No. NCC2 1231andtheArmy HighPerfor-
mance Computing Research Center under the auspices of the Department
of the Army, Army Research Laboratory cooperative agreement number
DAAD19-01-2-0014, the content of which does not necessarily reflect the
position or thepolicy of thegovernment, and no official endorsement should
be inferred.
.

promotion, et. Other appliation domains for o-loationsare Earth siene, environmental management, governmentservies, publi health, publi safety, transportation, tourism,et.Co-loation rule disovery is a proess to identify o-loationpatterns from an instane dataset of spatial boolean events.It is not trivial to adopt assoiation rule mining algorithms [1,8, 13, 18℄ to mine o-loation patterns sine instanes of spa-tial events are embedded in a ontinuous spae and share avariety of spatial relationships. Reusing assoiation rule al-gorithms may require transationizing spatial datasets, whihis hallenging due to the risk of transation boundaries split-ting o-loation pattern instanes aross distint transa-tions. Figure 1 (a) shows an example spatial dataset withthree spatial events, A, B, and C. Eah instane is repre-sented by its event type and unique instane id, e.g., A.1.Solid lines show neighbor relationships over event instanes.For example, fA.2, B.4, C.2g and fA.3, B.3, C.1g are theinstanes of o-loation fA, B, Cg sine their event instanesare neighbors of eah other. Figure 1 (b) shows the problemof expliit transationization. Retangular grids are used toprodue transations over the spatial dataset. As an beseen by the solid line irle, the only identi�ed instane ofo-loation fA, B, Cg is fA.2, B.4, C.2g. The instane fA.3,B.3, C.1g is missed due to the split aused by the transationboundaries.Related Work: In previous work on o-loation patterndisovery, a few approahes have been developed to iden-tify instanes of andidate o-loation patterns. One ap-proah [12℄ groups neighboring instanes arbitrarily with anon-overlapping instane grouping onstraint. This disjointgrouping method may yield di�erent instane sets by theorder of grouping. For example, Figure 1 () illustrates dif-ferent instane sets of o-loation fA, B, Cg by the orderof grouping instanes of size 2 o-loation fA, Bg. If an in-stane fA.4, B.3g is �rst grouped, the instane fA.3, B.3gis not identi�ed sine B.3 already belongs to instane fA.4,B.3g even if it is a neighborhood instane. Consequently,the instane fA.3, B.3, C.1g of o-loation fA, B, Cg is alsonot found.Another approah [15℄ generates instanes of andidateo-loations without any missing by using an instane joinmethod. For example, in Figure 1 (d), the instanes of o-loation fA, Bg and the instanes of o-loation fA, Cg arejoined and their neighbor relations are heked for gener-
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(d)Figure 1: Examples to illustrate di�erent approahes to disover o-loation patterns (b) An expliit transa-tionization of a spatial dataset an split instanes of o-loations. () The non-overlapping grouping methodan generate sets of di�erent instanes. (d) The instane join method generates omplete instanes butomputation is expensive.
ating instanes of o-loation fA, B, Cg. fA.2, B.4, C.2gand fA.3, B.3, C.1g are orretly generated. The join-basedalgorithm may be useful in analyzing datasets of sparse in-stanes. However, saling the algorithm to substantiallylarge dense spatial datasets is hallenging due to the in-reasing number of o-loation patterns and their instanes.Other o-loation mining work [17℄ presents a framework forextended spatial objets, e.g., polygons and line strings. Italso uses an instane join method to identify nearby spatialobjets.This paper proposes a novel approah for eÆient o-loation pattern mining. We make the following ontribu-tions.Our Contributions: First, we identi�ed the omputa-tional bottlenek in the exeution time of the join-basedo-loation mining algorithm [15℄. A large fration of the al-gorithm is devoted to omputing joins to identify instanesof andidate o-loation patterns. Seond, we propose anovel partial-join approah for mining o-loation patternseÆiently. It transationizes ontinuous spatial data whilekeeping trak of the spatial information not modeled bytransations. This approah is based on an important ob-servation that only event instanes having at least one utneighbor relation are related to o-loation instanes splitover transations. Third, we present an eÆient o-loationmining algorithm to onretize the partial-join approah. Ituses a transation-based Apriori algorithm [1℄ as a buildingblok and adopts the instane join method [15℄ of the join-based o-loation mining algorithm for generating residualo-loation instanes not identi�ed by transations. Fourth,we prove that the partial join algorithm is orret and om-plete in �nding all o-loation rules with prevalene and on-ditional probability above the given thresholds. Fifth, weprovide an algebrai ost model to haraterize the dom-inane zone of the performane between our partial-joinalgorithm and the join-based algorithm. Finally, we on-duted experiments using a real dataset as well as synthetidatasets. The experimental evaluation shows that our algo-rithm is omputationally more eÆient than the full join-

based mining algorithm.The remainder of the paper is organized as follows. Se-tion 2 presents an overview of basi onepts of o-loationpattern mining. In Setion 3, we present the partial join ap-proah for eÆient o-loation mining. Setion 4 desribesthe partial join o-loation mining algorithm. The proofs oforretness and ompleteness of the algorithm, and an alge-brai ost model are given in Setion 5. Setion 6 presentsexperimental evaluations. We give the onlusion and dis-uss future work in Setion 7.
2. CO-LOCATION PATTERN MINING:

BASIC CONCEPTSThis setion desribes the basi onepts for mining o-loation patterns.Given a set of boolean spatial events E = fe1; : : : ; ekg,a set S of their instanes fi1; : : : ; ing, and a reexive andsymmetri neighbor relation R over S, a o-loation C is asubset of boolean spatial events, i.e., C � E whose instanesI � S form a lique [3℄ using neighbor relation R. Forsimpliity, we use a metri-based neighbor relation R, i.e.,neighbor(i1, i2) between event instanes i1 and i2 de�nedby Eulidean distane(i1, i2) � a user-spei�ed threshold isused as a neighbor relation R.A o-loation rule is of the form: C1 ! C2(p; p), whereC1 and C2 are disjoint o-loations, p is a value representingthe prevalene measure, and p is the onditional probabil-ity.A neighborhood instane I of a o-loation C is a rowinstane (simply, instane) of C if I ontains instanes of allevents in C and no proper subset of I does so. For example,in Figure 1 (d), fA.1, B.1g is a row instane of o-loationfA, Bg. fA.3, C.1, C.3g is a neighborhood in Figure 1 (a)but it is not a row instane of o-loation fA, Cg beauseits subset fA.3, C.1g ontains instanes of all events in fA,Cg. The table instane of a o-loation C is the olletionof all row instanes of C. For example, the table instaneof fB, Cg in Figure 1 (d) has two row instanes, fB.3, C.1gand fB.4, C.2g.



The onditional probability, Pr(C1jC2), of a o-loationrule C1 ! C2 is the probability of �nding an instane of C2in the neighborhood of an instane of C1. Formally, it isestimated as j�C1 (table instane of C1[C2)jjtable instane of C1j , where � is a pro-jetion operation with dupliation elimination.The partiipation index, Pi(C) is used as a o-loationprevalene measure. The partiipation index of a o-loationC = fe1; : : : ; ekg is de�ned as minei2CfPr(C; ei)g, wherePr(C; ei) is the partiipation ratio for event type eiin a o-loation C. Pr(C; ei) is the fration of instanesof ei whih partiipate in any instane of o-loation C,j�ei (table instane of C)jjtable instane of eij , where � is a projetion operation withdupliation elimination. For example, in Figure 1 (a), thetotal number of instanes of event type A is 4 and the to-tal number of instanes of event type C is 3. From Fig-ure 1 (d), the partiipation index of o-loation =fA, Cg isminfPr(, A), Pr(,C)g = 3/4 beause Pr(, A) is 3/4 andPr(,C) is 3/3. A high partiipation index value indiatesthat the spatial events in a o-loation pattern likely showup together.Lemma 1. The partiipation ratio and the partiipationindex are monotonially non inreasing with the size of theo-loation inreasing.Proof. Please refer to [15℄ for the proof.Lemma 1 ensures that the partiipation index an be usedto e�etively prune the searh spae of o-loation patternmining.
3. PARTIAL JOIN APPROACH FOR

CO-LOCATION PATTERN MININGThis setion de�nes our partial join approah for eÆiento-loation pattern mining.
3.1 Problem DefinitionWe formalize the o-loation mining problem as follows:Given:1) A set of k spatial event types E = fe1; : : : ; ekg and a setof their instanes S = fi1; : : : ; ing, eah i 2 S is a vetor <instane id, spatial event type, loation >, where loation 2a spatial framework2) A symmetri and reexive neighbor relation R over loa-tions3) A minimal prevalene threshold (min prev) and a mini-mal onditional probability threshold (min ond prob)Find:Find a orret and omplete set of o-loation rules withpartiipation index > min prev and onditional probability> min ond prob.Objetive:Minimize omputation ost.Constraints:1) R is a distane metri based neighbor relation.2) Ignore edge e�ets in R.3) Corret and omplete in �nding all o-loation rules sat-isfying given thresholds.4) Spatial dataset is a point dataset.
3.2 Partial Join ApproachThe basi idea of the partial join approah is to redue thenumber of instane joins for identifying instanes of andi-

date o-loations by transationizing a spatial dataset un-der a neighbor relationship and traing only residual neigh-borhood instanes ut apart via the transations. The keyomponent of our approah is how we identify instanes ofo-loations split aross expliit transations. It is based onan observation that only event instanes having at least oneut neighbor relationship are related to the neighborhoodinstanes split over transations. To formalize this idea, weprovide a set of de�nitions of key terms related to the partialjoin approah.Definition 1. A neighborhood transation(simply,transation) is a set of instanes T � S that forms a liqueusing a neighbor relation R. A spatial dataset S is parti-tioned to a set of disjoint transations fT1; : : : ; Tng whereTi \ Tj = ;, i 6= j and [(T1; : : : ; Tn) = S.We assume a spatial dataset S an be partitioned to aset of distint transations, i.e., eah event instane i 2 Sbelongs to one transation. For example, Figure 3 shows aset of transations on the same example spatial dataset ofFigure 1 (a). The dashed irle represents a neighborhoodregion entered at an arbitrary loation on a spatial frame-work. The instanes within the dashed irle are neighborsof eah other and thus forms a transation. For example, B.2and B.5 form a transation. A spatial dataset an be di�er-ently transationized aording to the partitioning methodused. Thus the transations generated using retangulargrids in Figure 1 (b) are a little di�erent from the trans-ations illustrated in Figure 3. For example, in Figure 3,fA.3, C.1, C.3g forms a single transation. By ontrast, inFigure 1 (b), it is divided into two transations, fA.3, C.3gand fC.1g. We will examine the e�et of di�erent transa-tionization methods in future work.Definition 2. A row instane I of a o-loation C is anintraX row instane (simply, intraX instane) of C if allinstanes i 2 I belong to a ommon transation T . TheintraX table instane of C is the olletion of all intraXrow instanes of C.For example, in Figure 3, fA.3, C.1g is an intraX instaneof o-loation fA, Cg but fA.1, C.1g is not sine its eventinstanes A.1 and C.1 are members of di�erent transations.The intraX table instane of fA, Cg onsists of fA.3, C.1g,fA.3, C.3g and fA.2, C.2g.Definition 3. A neighbor relation r 2 R between twoevent instanes, i1; i2 2 S; i1 6= i2 is alled a ut neighborrelation if i1 and i2 are neighbors of eah other but belongto distint transations.Figure 3 presents ut neighbor relations as dotted lines.fA.1, C.1g, fA.3, B.3g and fB.3, C.1g has ut neighborrelations.Definition 4. A row instane I of a o-loation C is aninterX row instane (simply, interX instane) of C if allinstanes i 2 I have at least one ut neighbor relation. TheinterX table instane of C is the olletion of all interXrow instanes of C.For example, in Figure 3, fA.3, B.3g is an interX instaneof o-loation fA, Bg beause A.3 has a ut neighbor relationwith B.3 and B.3 also has ut neighbor relations with A.3and with C.1. Note fA.3, C.1g is an interX instane as well



as an intraX instane of fA, Cg. InterX table instane offA, Cg has two interX instanes fA.1, C.1g and fA.3, C.1g.Figure 2 illustrates the possible instanes of size 3 o-loation and of size 4 o-loation loated over neighborhoodtransations. Blak dots signify event instanes, irles aretransations, and lines show neighbor relations between twoevent instanes. Espeially, dotted lines signify ut neighborrelations. There are two types of instanes of o-loations.One is all event instanes of a o-loation instane belongto a single transation. The other is the event instanesare distributed aross two or more transations. The for-mer is the ase of an intraX instane and the latter is aninterX instane. We an notify all event instanes of in-terX instanes are related to at least one ut neighbor rela-tion(dotted lines).
Instances
InterX

Instances
IntraX

Size
Co−location Size 4Size 3

Figure 2: The ases of possible instanes of size 3and of size 4 o-loations over transationsLemma 2. For a o-loation C, the table instane of Cis the union of intraX table instane of C and interX tableinstane of C.Proof. The table instane of a o-loation C is the ol-letion of all (row) instanes of C. First, we will show anyinstane, I = fi1; : : : ; ing of C is an intraX instane of Cor an interX instanes of C. Sine I forms a lique using aneighbor relation, all event instanes of I an be inluded ina single neighborhood transation aording to de�nition 1.I beomes an intraX instane. By ontrast, if all event in-stanes of I are not in a single transation, eah membershould have at least one ut neighborhood relation with theother members in di�erent transations due to their liquerelation. Thus, I beomes an interX instane. Seond, allinstanes of intraX table instane and interX table instaneof C are row instanes whose event instanes form a liqueaording to de�nition 2 and de�nition 4 .
4. PARTIAL JOIN CO-LOCATION MINING

ALGORITHMThis setion desribes the partial join o-loation min-ing algorithm. A transation-based Apriori algorithm [1℄ isused as a building blok to identify all intraX instanes ofo-loations. InterX instanes are generated using general-ized apriori gen funtion [15℄ of the join-based o-loationmining algorithm. This approah is expeted to provide aframework for eÆient o-loation mining sine all instanesin the transation are neighbors of eah other and no spa-tial operation and ombinatorial operation, i.e., join, is re-quired to �nd instanes of andidate o-loations within atransation, i.e., intraX instanes. The omputation ost of
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Figure 3: An illustration of the partial join o-loation mining algorithm
instane join operations for generating only interX instanesnot identi�ed in the transations is relatively heaper thanone for �nding all instanes of o-loations. The partial-joinmining algorithm for o-loation patterns is desribed as fol-lows.Transationization of a spatial dataset : Given a spa-tial dataset and a neighbor relation, the spatial dataset ispartitioned for generating neighborhood transations. Thereare several partitioning methods adopted for neighborhoodtransations, e.g., grids [14℄, maximal liques[3℄, max-liqueagglomerative lustering [20℄, min ut partitioning [6℄ et.The ideal ase is a method to generate a set of maximalliques with minimizing the number of edges ut by parti-tions. In the ase of a simple grid partitioning, retangulargrids of a proximity neighborhood size d � d, where d isa neighbor distane metri, are posed on a spatial frame-work, and event instanes in eah ell are gathered for atransation. Cut neighbor relations an be deteted by ex-amining all pairs (i1; i2) of instanes in neighboring ells,i.e., (i1; i2) 2 R and i1:trans no 6= i2:trans no, where Ris a neighbor relation. It an be implemented using geo-metri approahes, e.g., plane sweep [2℄, spae partition-ing [9℄, tree mathing [10℄. Size 2 interX instanes are gen-erated from all pairs(i1; i2) of instanes having ut neigh-bor relations in eah transation, i.e., i1 2 B, i2 2 B andi1:trans no = i2:trans no, where B is a set of event in-stanes having ut neighbor relations , as well as ut neigh-borhood instanes.Generation of andidate o-loations : We use theapriori gen [1℄ for generating andidate o-loation sets.Size k + 1 andidate o-loations are generated from sizek prevalent o-loations. The anti-monotoni property ofthe partiipation index makes event level pruning feasible.Sanning transations and gathering intraX instanes



InputsE:a set of boolean spatial event typesS:a set of instanes<event type, event instane id, loation>R:a spatial neighbor relationmin prev:prevalene value thresholdmin ond prob:onditional probability thresholdOutputA set of all prevalent o-loation rules withpartiipation index greater than min prevand onditional probability greater thanmin ond probVariablesk:o-loation sizeT:a set of transationsCk:a set of size k andidate o-loationsPk:a set of size k prevalent o-loationsRk:a set of size k o-loation rulesIntraXk:intraX table instanes of CkInterXk:interX table instanes of Ck, PkMethod1) (T, InterX2)=transationize(S, R);2) k = 1; C1 = E; P1 = E;3) while (not empty Pk) do f4) Ck+1=gen andidate o-loation(Pk);5) for all transation t 2 T6) IntraXk+1=gather intraX instanes(Ck+1 ; t);7) if k � 28) InterXk+1=gen interX intanes(Ck+1; InterXk; R);9) Pk+1=selet prevalent o-loation10) (Ck+1; IntraXk+1S InterXk+1;min prev);11) Rk+1=gen o-loation rule(Pk+1;min ond prob);12) k = k + 1;13) g14) return S(R2; : : : ; Rk+1);Algorithm 1: Partial join o-loation algorithm
: In eah iteration step, the transations are sanned andthe intraX instanes of andidate o-loations are enumer-ated. This step is similar to the apriori algorithm. However,notie that the transations of a spatial event dataset di�erfrom the transations of a market basket dataset. The tradi-tional market basket data transation has only boolean itemtypes, i.e., an item is present in a transation or not. Byontrast, eah item of our neighborhood transation onsistsof an event type and its instane id as desribed in Figure 3.One event type an have several instanes in a transation.To reuse an eÆient trie data struture [4, 7℄ in determininginstanes of andidate o-loations in a transation, we on-vert several items of same event type with di�erent instaneids to one event type item having a bitmap struture [5℄ inwhih orresponding instane id bits are set. The onvertedtransations are searhed for gathering intraX instanes ofo-loations. Figure 3 shows a oneptual set of intraX tableinstanes. Atually, all instanes are enumulated in the triestruture of itemsets using bitmaps.Generation of interX table instanes : The interX tableinstane of Ck+1, k � 2 are generated from interX table in-stane of Ck using the generalized apriori gen funtion [15℄.The SQL-like syntax is desribed below.

forall o-loation k+1 2 Ck+1insert into k+1.interX table instaneselet p.instane1, p.instane2, : : : , p.instanek, q.instanekfrom k.interX table instane1 p, k.interX table instane2 qwhere (p.instane1, : : : , p.instanek�1)= (q.instane1, : : : , q.instanek�1)and (p.instanek, q.instanek) 2 R;end;In Figure 3, an interX table instane of fA, Bg havingfA.3, B.3g and an interX table instane of fA, Cg havingfA.1, C.1g and fA.3, C.1g are joined to produe interX ta-ble instane of fA, B, Cg.Seletion of Prevalent Co-loations: The partiipationindex of o-loation Ck+1 is alulated from the union of in-traX table instane(Ck+1) and interX table instane(Ck+1).Candidate o-loations are pruned using a given prevalenethreshold, min prev. In Figure 3, o-loation fB, Cg hastwo instanes, i.e., one is an intraX instane, fB.4, C.2g andthe other is an interX instane fB.3, C.1g. The partiipa-tion index of o-loation fB, Cg is minf2/5, 2/3g = 2/5.If min prev is given as 1/2, the andidate o-loation fB,Cg is pruned beause its prevalene measure is less than 1/2.Generation of Co-loation Rules: This step generatesall o-loation rules with high onditional probability abovea given min ond prob.
5. ANALYSISOF THE PARTIAL JOIN

CO-LOCATION MINING ALGORITHMIn this setion, we analyze the partial join o-loation min-ing algorithm for ompleteness, orretness and omputa-tional omplexity. Completeness implies that no o-loationrule satisfying given prevalene and onditional probabilitythresholds is missed. Corretness means that the partiipa-tion index values and onditional probability of generatedo-loation rules meet the user spei�ed threshold.
5.1 Completenessand CorrectnessLemma 3. The partial join o-loation mining algorithmis orret.Proof. The partial join o-loation mining algorithm isorret if o-loation patterns produed by algorithm 1 meetsthe thresholds of prevalene value and onditional probabil-ity. First, we will show that intraX instanes and interXinstanes are orret in the neighbor relation. Step 1 in al-gorithm 1 generates neighborhood transations aording tode�nition 1. Thus the intraX instanes gathered in step 6are orret in the neighbor relation. The interX instanesgenerated in step 8 are proved by the orretness of gener-alized apriori gen algorithm [15℄. That is, all instanes of agenerated interX instane are neighbor of eah other. Se-ond, step 9 ensures that only prevalent o-loation sets areseleted. Thus step 11 returns o-loation rules above giventhresholds orretly.Lemma 4. The partial join o-loation mining algorithmis omplete.



Proof. We prove if a o-loation is prevalent, it is foundby algorithm 1. First, the monotoniity of the partiipationindex in lemma 1 proves the ompleteness of the event levelpruning of andidate o-loations using apriori gen in step4. Seond, we will show that the intraX table instanes andthe interX table instanes generated from algorithm 1 areomplete, whih will imply that all instanes of o-loationsare omplete aording to lemma 2. All intraX table in-stanes are ompletely found by the apriori algorithm instep 6. Size 2 interX table instanes generated from step1 are a superset of all neighboring instanes neessary togenerate size k + 1, k � 2 interX instanes. In step 8, theompleteness of the instane join method to generate interXinstanes is the same as that of generalized apriori gen [15℄.In step 11, enumeration of the subsets of eah of the preva-lene o-loations ensures that no spatial o-loation rulessatisfying given prevalene and onditional probabilities aremissed.
5.2 Computational Complexity AnalysisThis setion ompares the omputational ost of the join-based o-loation mining algorithm and the partial join al-gorithm. Let Tjb(k+1) and Tpj(k+1) represent the osts ofiteration k of the join-based algorithm and the partial joinalgorithm respetively.Tjb(k + 1) = Tgen andi(Pk)+ Tgen inst(table insts of Pk) + Tprune(Ck+1)� Tgen inst(table insts of Pk)Tpj(k+1) = Tgen andi(Pk)+Tgath intraX inst(transations)+ Tgen interX inst(interX table insts of Pk) +Tprune(Ck+1)� Tgen interX inst(interX table insts of Pk)In the above equations, Tgen andi(Pk) represents the ostof generating size k+1 andidate o-loation with the preva-lent size k o-loations. Tgen inst(table insts of Pk) repre-sents the ost of generating table instanes of size k + 1andidate o-loations with size k table instanes.Tgath intraX inst(transations) is the ost of sanning trans-ations and gathering the instanes of the size k + 1 andi-date o-loations. Tgen interX inst(interX table inst of Pk)is the ost of generating interX table instanes of the sizek + 1 andidate o-loations with size k interX table in-stanes. Tprune(Ck+1) represents the ost for pruning nonprevalent size k + 1 o-loations.The bulk of time is onsumed in generating instanes.We assume that the ost of gathering intraX instanes fromtransations is relatively heaper than instane join ost,and that the other fators, Tgen andi(Pk) and Tprune(Ck+1)are illegible. Thus the omputational ratio of the partial joinalgorithm over the join-based algorithm an be simpli�ed asTpj(k + 1)Tjb(k + 1) � Tgen interX inst(interX table insts of Pk)Tgen inst(table insts of Pk)The omputational ratio is a�eted by the size of interXtable instanes and the size of table instanes of o-loationPk. The dominane fators a�eting the number of interXinstanes and the number of total instanes an be the num-ber of ut neighbor relations and the data density of theneighborhood area. When the number of ut neighbor rela-tions is �xed and the data density in a neighborhood area

grows, the size of table instanes inreases rapidly and theost to generate the table instanes is muh greater than theost to generate interX table instanes. By ontrast, as thenumber of ut neighbor relations inreases, the size of interXtable instanes inreases. Thus the average ost to gener-ate interX table instanes grows. When all instanes haveut neighbor relations, they are involved in interX table in-stanes thus the ost to generate the interX table instanesis similar to the ost to generate table instanes in the join-based algorithm. In our experiments, as desribed in thenext setion, we use the data density in neighborhood areaand the ratio of ut neighbor relations as key parameters toevaluate the algorithms. We an expet that the partial joinapproah is likely more eÆient than the join-based methodwhen the loations of spatial events are lustered in neigh-borhood areas and the number of ut neighbor relations issmaller.
6. EXPERIMENTAL EVALUATION
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d x d Figure 4: Experimental DesignWe evaluated the performane of the partial join algo-rithm with the join-based approah using syntheti and realdatasets. In Subsetion 6.1, we desribe an overall exper-imental design and a syntheti data generator. In Subse-tion 6.2, we evaluate the omputational eÆieny gainedfrom our partial join o-loation algorithm with synthetidatasets by studying the parameters that a�et performane.Subsetion 6.3 ompares the performane of the algorithmsusing a real dataset.
6.1 Experiment DesignFigure 4 shows an overall experiment layout. Synthetidatasets were generated using a methodology similar to themethodology used to evaluate the join-based algorithm [15℄.We added some parameters and proedures in it to generatetransationized instanes and ut neighbor relations. Thesyntheti data generator allows better ontrols in studyingthe e�ets of interesting parameters. First we desribe thelayout of an overall spatial framework. For simple trans-ationization of a spatial dataset, we posed grids of neigh-borhood size d� d on a retangle spatial framework of sizeD1�D2. Eah grid ell is impliitly divided into two parts, aore area and an overlapping area. The ore area is an areain whih event instanes have neighbor relationships withonly instanes in its grid ell. By ontrasts, instanes inthe overlapping area are also under neighbor relations withinstanes in its neighboring ells. This area was used forgenerating ut neighbor relations.



The syntheti spatial datasets were generated as follows.Given a number of base o-loation patterns, No lo, thesize of eah o-loation n1 was piked from a Poisson distri-bution with mean �1. We assigned randomly hosen sets ofevent types to the o-loation patterns. The number of baseinstanes of eah o-loation n2 was hosen from anotherPoisson distribution with mean �2. Our data generator isalso ontrolled by two other parameters, ut instane ratio� and spatial framework size �. The ut instane ratio wasused for ontrolling the number of ut neighbor relations inthe experiment. (1��)�n2 instanes were generated in theore area of a randomly hosen ell. � � n2 instanes weregenerated over its overlapping area and the overlapping ar-eas of its neighboring ells. For simply ontrolling the datadensity value under datasets of the same size, we hangedthe size of the overall spatial framework. To inrease thedensity value, we used a smaller spatial framework but thesame neighborhood size d� d.The partial join o-loation algorithm and the join-basedo-loation algorithm were exeuted using generated spatialdatasets and a real set of limate data from NASA. The per-formane of the two algorithms was evaluated by exeutiontime. The average o-loation size and the average numberof instanes of o-loations of the generated datasets arelikely di�erent from the initial parameter values after gener-ating ut instanes and also aording to the size of hoosenspatial framework for ontrolling the data density. We willaddress the e�et of these parameters and noise data onperformane in future work. All the experiments were per-formed on a Sun SunBlade 1500 with 1.0 GB main memoryand 177MHz CPU.
6.2 PerformanceStudyThe experiment was onduted using detailed simulationsto answer the following questions :1. How does the ratio of ut neighbor relations over totalneighbor relations a�et the performane ?2. How does data density in the neighborhood area a�etthe performane ?3. How do the algorithms behave with di�erent prevalenethresholds ?The ommon parameter values used in these experimentswere as follows: the neighborhood size to de�ne a o-loation,d� d, is 10� 10, the number of base o-loations, No lo,is 20, the average size of o-loation patterns, �1, is 4 andthe average size of o-loation instanes, �2, is 50.E�et of ratio of ut neighbor relations : The e�etof performane by the ratio of ut neighbor relations over to-tal neighbor relations was evaluated with syntheti datasetsgenerated using the above ommon parameters and di�er-ent ut instane ratios, i.e., 0, 0.1, 0.2, 0.3, et. The size ofthe overall spatial framework was �xed to 400 � 400. Theprevalene threshold was set to 0.2.Figure 5 shows the exeution time of both algorithms, thepartial join and the join-based, over ut neighbor relationratios. The ratio of ut neighbor relations over total neigh-bor relations was ontrolled by the ut instane ratio in theexperiment. The overall exeution time inreased with in-reases in the ratio. The reason is, that as the ratio of utrelations beomes larger, the size of interX table instanesinreases. This auses the number of instanes involved in
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Figure 5: E�et of ratio of ut neighbor relationsover total neighbor relations
the join operation to grow and the exeution time to in-rease. The join-based algorithm also shows an inrease inits exeution time. This happens beause the number of in-stanes in the overlapping area inreases and the possibilityof neighbor relations with instanes in the nearby ells in-reases, thus generating many neighborhood instanes. Theaverage size of table instanes also inreases. The perfor-mane di�erene between the two algorithms dereases withinreases in the number of ut neighborhoods. When allevent instanes were related to ut neighbor relations, thetwo algorithms showed similar exeution time.

Table 1: A omparison of size 2 instanesData density Number of Number ofin the neighborhood size 2 interX size 2area instanes instanesof partial join of join-based0.07 2,429 18,4500.09 2,892 24,6960.10 3,426 30,2330.12 3,496 31,0990.13 4,268 39,583

 0

 100

 200

 300

 400

 500

 600

 700

 0.08  0.09  0.1  0.11  0.12  0.13

E
x
e

c
u

ti
o

n
 T

im
e

 (
s
e

c
)

Data density in the neighborhood area

partial join
join-based

Figure 6: E�et of data density on neighborhoodarea



E�et of data density in the neighborhood : The ef-fet of data density in the neighborhood area was evaluatedwith spatial datasets generated using the above ommonparameters and spatial frameworks of di�erent size �, i.e.,500 � 500, 400 � 400, 360 � 360, et., to ontrol the datadensity on the neighborhood. The ut instane ratio � was�xed to 0.1 and the prevalene measure was set to 0.2. Thedensity value was alulated from the generated dataset. Itis the ratio of the average number of instanes in a neigh-borhood area over the size of the square neighborhood area,10 � 10. The inrease of data density in this experimentmainly a�ets to data density in the ore area sine the utinstane ratio is �xed.Figure 6 illustrates the performane gain by the partialjoin algorithm. As the density inreases, the exeution timeof the join-based algorithm is dramatially inreased. Byontrast, the partial join algorithm shows little e�et fromthe size of data density in the neighborhood area. A small-sale inrease of data in the the neighborhood area doesnot muh a�et the transation-based algorithm while thejoin-based method shows great sensitivity to even a smallinrease of the data density. Table 1 shows a omparisonbetween the number of size 2 interX instanes generated bythe partial join algorithm and the number of size 2 instanesof the join-based algorithm. These instanes are involved ininstane join operations for generating size 3 instanes. Asan be seen, the partial join approah had muh fewer in-stanes than the join-method in this experiment.E�et of prevalene threshold : The performane ef-fet as the prevalene threshold inreases is given in Fig-ure 7. The experiment was onduted with the above om-mon parameters, a 400�400 spatial framework and a 0.3ut instane ratio. The partial join approah showed muhbetter performane than the join-based approah when thethreshold values were low. However, the gap dramatiallydereased with inreases in the threshold value. The reasonis the derease in the number of joins of instanes due to theeÆient pruning of the event level searh spae.
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Figure 7: E�et of prevalene threshold
6.3 Experiment on a Real DatasetWe evaluated the partial join algorithm and the join-basedalgorithm using a NASA limate dataset of the U.S. region.All events were extrated at the threshold 1.5 using Z soretransformation [16℄. The number of event types was 18.The total number of event instanes was 15,515. When the

neighborhood distane threshold was 4, the total number ofsize 2 neighborhood instanes was 390,392 and the numberof size 2 ut neighborhood instane(size 2 interX instanes)was 314,078. When the prevalene threshold was 0.1, themaximum size of o-loations was 5. Figure 8 presents theexeution time of the two algorithms as a funtion of theprevalene threshold. The partial join method shows rela-tively better performane.
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Figure 8: A omparison using a real dataset
7. CONCLUSION AND FUTURE WORKIn this paper, we identi�ed the limitations of the urrento-loation mining algorithm and proposed a novel partial-join approah for mining omplete and orret o-loationpatterns. This approah transationizes ontinuous spatialdata while keeping trak of the spatial information not mod-eled by transations. To onretize this approah, we pro-posed an eÆient partial join o-loation algorithm to adoptthe instane join method on the framework of the Aprioiralgorithm. We provided an algebrai ost model to hara-terize the dominane zone of the performane between thepartial-join approah and the join-based method. The per-formane study showed that our approah is omputation-ally more eÆient and is espeially robust in data densityon the neighborhood.In future work, �rst, we plan to develop an alternative ef-�ient join algorithm for generating instanes of o-loationswithout inluding dupliate instanes in intraX table in-stanes and interX table instanes. This approah will fur-ther redue the number of instane joins. The algorithm willbe robust in any dataset, e.g., dense datasets with manyut neighborhoods. Seond, we used a regular grid basedtransationziation. We plan to examine di�erent transa-tionization methods, e.g., maximal liques[3℄, max-liqueagglomerative lustering [20℄, min ut partitioning [6℄ et.Third, reent work [19℄ on the o-loation mining presentsa general method to �nd the maximal patterns of referenefeature entri o-loations and lique o-loations onsid-ering memory onstraints. It uses tehniques of spatial joinalgorithms, e.g., partition-based spatial join [9℄ , multiwayspatial join [11℄. We plan to ompare our approah to thespatial join-based method. Finally, although urrent o-loation patterns are de�ned over spatial features, data inmany appliations inlude spatio-temporal features. Thuswe also plan to explore a o-loation mining method forspatio-temporal datasets.
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